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ABSTRACT

Using nine years of historical forecasts spanning April 2003–April 2012 from NOAA’s Second Generation

Global Ensemble Forecast SystemReforecast (GEFS/R) ensemble, random forest (RF)models are trained to

make probabilistic predictions of severe weather across the contiguous United States (CONUS) at Days 1–3,

with separate models for tornado, hail, and severe wind prediction at Day 1 in an analogous fashion to the

Storm Prediction Center’s (SPC’s) convective outlooks. Separate models are also trained for the western,

central, and eastern CONUS. Input predictors include fields associated with severe weather prediction, in-

cluding CAPE, CIN, wind shear, and numerous other variables. Predictor inputs incorporate the simulated

spatiotemporal evolution of these atmospheric fields throughout the forecast period in the vicinity of the

forecast point. These trained RFmodels are applied to unseen inputs fromApril 2012 to December 2016, and

their forecasts are evaluated alongside the equivalent SPC outlooks. The RFs objectively make statistical

deductions about the relationships between various simulated atmospheric fields and observations of dif-

ferent severe weather phenomena that accord with the community’s physical understandings about severe

weather forecasting. Using these quantified flow-dependent relationships, the RF outlooks are found to

produce calibrated probabilistic forecasts that slightly underperform SPC outlooks at Day 1, but significantly

outperform their outlooks at Days 2 and 3. In all cases, a blend of the SPC and RF outlooks significantly

outperforms the SPC outlooks alone, suggesting that use of RFs can improve operational severe weather

forecasting throughout the Day 1–3 period.

1. Introduction

Severe weather, as defined in theUnited States, includes

three distinct phenomena: 1) the presence of one or more

tornadoes of any intensity, 2) the presence of 1 in. (2.54cm)

or larger hail, or 3) convectively induced wind gusts of at

least 58mph (93kmh21). Beyond these criteria, tornadoes

of F2 or EF2 strength or greater, hail 2 in. (5.08cm) or

larger in diameter, or wind gusts of at least 74 mph

(119kmh21), pose particularly elevated threats to life and

property and are considered supplementarily in a ‘‘signif-

icant severe’’ weather class (Hales 1988; Edwards et al.

2015). Collectively, these hazards have inflicted more than

1100 fatalities and $36.4B in damages across the contigu-

ous United States (CONUS) in 2010–18 (NWS 2018).

While inherently dangerous and damaging phenomena,

accurate severe weather forecasts can increase prepared-

ness and help mitigate inclement weather losses.

The hazards associated with severe weather are

further encumbered by the challenge in accurately

forecasting the phenomena. Due to the very small

spatial scales associated with severe weather, it is of-

ten exceedingly difficult to model dynamically with

operational weather models. Production of large hail

involves a plethora of very small-scale microphysical

processes that are necessarily parameterized in numer-

ical models. The microphysical simplifications involved

to hasten production of operational model output, in-

cluding bulk rather than bin schemes (e.g., Khain et al.

2015), single moment microphysics (e.g., Igel et al. 2015;

Labriola et al. 2017), and in some cases, not having an

explicit category for hail at all (e.g., Hong and Lim

2006), all make direct prediction of severe hail from

operational dynamical model output a perilous task.

Tornadoes are in some respect even more difficult to

simulate; while numerical tornado simulations have

been conducted in a research setting (e.g., Orf et al.

2017), they occur on much too small of spatial scales to

be resolved by any operational model. In forecasting

severe weather, it is therefore necessary to relate simu-

lated environmental factors across various scales, from
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storm scale up to the synoptic scale, to severe weather

risk. This is routinely performed in the human severe

weather forecast process (e.g., Johns and Doswell 1992;

Doswell 2004; Doswell and Schultz 2006), but in terms of

producing automated guidance, statistical in addition to

dynamical approaches are necessary for this important

forecast problem.

CONUS-wide operational severe weather forecasts

are issued routinely by the Storm Prediction Center

(SPC) for Days 1–8 via their convective outlooks

(Edwards et al. 2015). Forecasts are issued for 24-h

1200–1200 UTC periods, and are given as probabili-

ties of observing the corresponding severe weather

phenomenon within 40 km of the forecast point during

the period. For Day 1, SPC issues separate probabi-

listic outlooks for each of the three severe weather

predictands; for Day 2 and beyond, they are treated

collectively in a single outlook. In the forecast pro-

cess, the forecaster draws from a discrete set of al-

lowable probability isopleths, where applicable. For

Day 1 hail and wind outlooks, and Day 2 and 3 out-

looks, permitted isopleths are 5%, 15%, 30%, 45%,

and 60%; Day 1 tornado outlooks include 2% and

10% probability contours as well. For Day 4 and be-

yond, only 15% and 30% contours are issued, and for

significant severe risk, only a single 10% contour is

drawn. For more information on SPC’s forecasting

process, including historical changes to severe weather

and product definitions, see Hitchens and Brooks (2014),

Edwards et al. (2015), or Herman et al. (2018).

A limited number of published studies have quanti-

fied the skill of these convective outlooks and exam-

ined their strengths and weaknesses. Hitchens and

Brooks (2012) investigated the skill of Day 1 categor-

ical outlooks, and this effort was expanded to include

evaluation of Days 2 and 3—among other additions—in

Hitchens and Brooks (2014). Early published efforts to

verify SPC’s convective outlooks probabilistically (e.g.,

Kay and Brooks 2000) have received renewed attention

in Hitchens and Brooks (2017) and more formally in

Herman et al. (2018). Collectively, these studies have

demonstrated improving skill in short- to medium-range

severe weather forecasts in association with improved

numerical weather prediction (NWP), though advances

have been stagnating somewhat in recent years. These

studies have shown that forecast skill is highest at the

shortest lead times and gets progressively lower with

increasing lead time. In general, wind is the most skill-

fully predicted severe weather phenomenon with tor-

nado outlooks exhibiting the lowest skill, but this is

reversed for significant severe events. Additionally, skill

was maximized over the Midwest and Great Plains, and

lowest over the South and West. Outlooks are generally

most skillful in the winter and spring, and least skillful in

the late summer into early autumn. Furthermore, skill is

high when at least moderate amounts of both CAPE and

wind shear are present, but struggle when CAPE is

limited and shear is large, or vice versa (e.g., Sherburn

and Parker 2014). As noted above, SPC’s convective

outlooks are based on only a finite set of probability

contours, producing discontinuous jumps in gridded

probability fields. Herman et al. (2018) demonstrated

that forecast skill is improved, albeit not uniformly,

when probabilities are interpreted as interpolated be-

tween human-drawn probability contours. In these in-

terpolated outlooks, hail and wind forecasts exhibit an

overforecast bias, while tornado and Day 2 and 3 out-

looks exhibit a slight underforecast bias.Moreover, their

evaluation provides quantitative benchmarks for plac-

ing newly developed statistical guidance in the place of

existing operational performance.

There have been numerous forays into statistical

prediction of severe weather in existing literature. These

include applications for statistical prediction of torna-

does (e.g., Marzban and Stumpf 1996; Alvarez 2014;

Sobash et al. 2016a; Gallo et al. 2018; McGovern et al.

2019), hail (e.g., Marzban andWitt 2001; Brimelow et al.

2006; Adams-Selin and Ziegler 2016; Gagne et al. 2017;

McGovern et al. 2019; Burke et al. 2020), wind (e.g.,

Marzban and Stumpf 1998; Lagerquist et al. 2017), and

severe weather more broadly (e.g., Gagne et al. 2009;

Sobash et al. 2011; Gagne et al. 2012; Sobash et al.

2016b). Many of these studies have applied machine

learning (ML) to the prediction task; in general, ML

techniques have demonstrated great promise in ap-

plications to high-impact weather prediction (e.g.,

McGovern et al. 2017, 2019). In addition to severe

weather, ML has demonstrated success in forecasting

heavy precipitation (e.g., Gagne et al. 2014; Herman

and Schumacher 2018a,b; Whan and Schmeits 2018;

Loken et al. 2019), cloud ceiling and visibility (e.g.,

Herman and Schumacher 2016; Verlinden and Bright

2017), and tropical cyclones (Loridan et al. 2017;

Alessandrini et al. 2018;Wimmers et al. 2019). Furthermore,

automated probabilistic guidance, includingMLalgorithms,

have been identified as a priority area for integrating with

the operational forecast pipeline (e.g., Rothfusz et al. 2014;

Karstens et al. 2018).However,many past applications have

focused on either much shorter time scales, such as nowcast

settings (e.g., Marzban and Stumpf 1996; Lagerquist et al.

2017), or on much longer time scales (e.g., Tippett et al.

2012; Elsner andWiden 2014; Baggett et al. 2018), with less

emphasis on the day-ahead time frame and very littlemodel

development in the medium-range (e.g., Alvarez 2014).

Furthermore, many studies have operated over only a re-

gional domain (e.g., Elsner and Widen 2014) and no study
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to date has exactly replicated the operational predictands of

SPC’s convective outlooks, making it difficult to make one-

to-one comparisons between ML study outcomes and op-

erational performance.

One such ML algorithm that has demonstrated suc-

cess in numerous previous high-impact weather fore-

casting applications (e.g., Williams et al. 2008; Gagne

et al. 2009; McGovern et al. 2011; Williams 2014; Clark

et al. 2015; Ahijevych et al. 2016; Elmore and Grams

2016; Herman and Schumacher 2016; Gagne et al. 2017;

Herman 2018; Herman and Schumacher 2018b; Whan

and Schmeits 2018) is the random forest (RF; Breiman

2001). This study seeks to apply RF methodology to the

generation of calibrated probabilistic CONUS-wide

forecasts of severe weather with predictands analo-

gous to those of SPC convective outlooks in the hope

that the guidance produced can be used to improve

operational severe weather forecasting. Section 2 pro-

vides further background and describes the data sour-

ces used and methodologies employed to create and

evaluate these forecasts. Section 3 describes the sta-

tistical importance of simulated fields determined by

the trained models. Section 4 evaluates the RF fore-

casts produced and places the results in the context of

existing operational forecasts. Section 5 concludes the

paper with a synthesis of the findings and a discussion

of their implications.

2. Data and methods

Herman and Schumacher (2018b) and its companion

paper, Herman and Schumacher (2018a), extensively

explored the utility of applying RFs and other machine

learning algorithms toward postprocessing global en-

semble output to forecast locally extreme precipitation

events across the CONUS at Days 2–3. This study fol-

lows analogous methodology. A relevant summary of

the methodology of Herman and Schumacher (2018a,b)

necessary for proper understanding of the methods

employed in this study is provided here, but for more

detailed explanations of the mathematical underpin-

nings of RFs and the numerous sensitivity experiments

performed therein, the reader is invited to consult those

studies. For brevity, several of the RF model configu-

ration choices selected in this study are motivated by the

findings of Herman and Schumacher (2018b) rather than

reperforming all the same sensitivity experiments for

this forecast problem (e.g., input predictor variables).

Informal replications of those sensitivity experiments

with the severe weather predictands used in this study

produced similar findings (not shown).

An RF (Breiman 2001) is an ensemble of unique,

weakly correlated decision trees. A decision tree makes

successive splits into branches, with each split based on

the value of a single randomly selected input predictor

at a branch node. The splitting predictor and the value

associated with each branch is determined by the com-

bination that best separates severe weather events from

nonevents in the supplied model training data. This

process is recursive and continues until a termination

criterion is satisfied, either because all of the remaining

training examples are ‘‘events’’ or ‘‘nonevents,’’ or be-

cause there are too few remaining training examples

to continue splitting. At this point, a ‘‘leaf’’ is produced,

which makes a forecast according to the proportion of

remaining training examples associated with each event

class (e.g., tornado or no tornado). In real-time fore-

casting, new inputs are supplied and the tree is traversed

from its root according to the input values until a leaf is

reached, which becomes the real-time prediction of the

tree. An RF produces numerous unique and diverse de-

cision trees by considering different subsets of training

data and input features (i.e., predictors) for each tree

generation process, as well as randomizing the input

features at each branch split in the tree. An RF’s forecast

is simply calculated as the mean probabilistic forecast

issued by the trees within the forest (e.g., Breiman 2001).

a. Designing the random forests

RF predictor information comes from NOAA’s Second

Generation Global Ensemble Forecast SystemReforecast

(GEFS/R) dataset (Hamill et al. 2013). The GEFS/R is

a global, convection-parameterized 11-member ensem-

ble with T254L42 resolution—which corresponds to

an effective horizontal grid spacing of ;55km at 408
latitude—initialized once daily at 0000 UTC beginning

in December 1984. Perturbations are applied only to the

initial conditions, and are made using the ensemble

transform with rescaling technique (Wei et al. 2008).

The ensemble system used to generate these reforecasts

is nearly static throughout its 301 year period of cover-

age, though updates to the operational data-assimilation

system over time have resulted in some changes in the

bias characteristics of its forecasts over the period of re-

cord (Hamill 2017). Most surface (or column-integrated)

fields are preserved on the native Gaussian grid (;0.58
spacing), while upper-level and some other fields are

available only on a 18 3 18 grid. Based on findings from

Herman and Schumacher (2018b), this study derives

predictors from the GEFS/R ensemble median. Model

training employs a 9-yr training period, using daily

initializations from 12 April 2003 to 11 April 2012.

Temporally, forecast fields are archived every 3 h out to

72 h past initialization, and are available every 6 h be-

yond that. Accordingly, the RFs trained in this study

use 3-hourly predictors for Day 1 (forecast hours 12–36)
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and 2 (hours 36–60) forecasts, and 6-hourly temporal

resolution for Day 3 (hours 60–84).

Several GEFS/R simulated atmospheric fields with

known or postulated physical relationships with se-

vere weather are used as RF predictors (Table 1),

referred to interchangeably as ‘‘features.’’ These in-

clude surface-based CAPE and CIN, 10-m winds

(U10, V10, UV10); surface temperature and specific

humidity (T2M, Q2M), precipitable water (PWAT),

accumulated precipitation (APCP), wind shear from

the surface to 850 and to 500 hPa (SHR850, SHR500),

and mean sea level pressure (MSLP). For Day 1, three

additional predictors are supplied: surface relative

humidity (RH2M), lifting condensation level height

above ground (ZLCL), and surface to 850hPa storm

relative helicity (SRH), approximated following Ramsay

and Doswell (2005) as described in the appendix. Some

of these variables are archived natively by the GEFS/R,

while others are derived based on stored fields that are

available. The full list of fields, their class, whether they

are natively archived or derived, and the grid from which

they are sampled is included in Table 1. Descriptions of

how derived variables are calculated is provided in the

appendix. For each field, in addition to sampling the

temporal variation of the fields throughout the forecast

period as noted above, spatial variations in the simulated

fields are included as inputs to the RF. Specifically, pre-

dictors are constructed in a forecast point-relative sense,

with predictors up to three grid boxes (1.58 or 38, de-
pending on the predictor) displaced in any horizontal

direction relative to the forecast point. Forecasts are

made on the Gaussian grid; for predictors on the 18 grid,
the nearest point to the Gaussian point is used as the

central point on that grid. In addition to this suite of

meteorological predictors, forecast point latitude, longi-

tude, and the Julian day associated with the forecast are

included as predictors.

SPC storm reports are used as observed severe weather

events for training and used equivalently for verification,

obtained from the SPC Severe Weather Database (SPC

2017a). A 40-km neighborhood radius is used to classify

GEFS/R grid points as nonevents/events/significant

events (encoded with a binary 0 or 1 for nonevents and

events, respectively); a grid point is encoded as an event

for the day if a report of the relevant severe weather type

is reported during the 1200–1200 UTC valid period

anywhere within 40km of the grid point. While 40 km is

somewhat comparable, though generally smaller, than

the GEFS/R effective grid spacing, every report gets

encoded as an event for at least one model grid point.

SPC outlooks are verified in a similar manner, but on a

higher-resolution grid. Sensitivity to grid choice was

explored inHerman and Schumacher (2018b) and found

not to play an important role in the verification statistics.

Past studies have shown that there are significant

changes in reporting trends in the SPC report record

TABLE 1. Summary of dynamical model fields examined in this study, including the abbreviated symbol to which each variable is

referred throughout the paper, an associated description, the predictor group with which the field is associated in the manuscript text, and

the highest resolution for which the field can be obtained from the GEFS/R. Variable symbols with an asterisk are used only in the Day 1

models.

Symbol Description Grid Calculated Class

APCP Precipitation accumulation in past (3) 6 h Native Gaussian Archived None

CAPE Surface-based convective available

potential energy

Native Gaussian Archived Thermodynamic

CIN Suface-based convective inhibition Native Gaussian Archived Thermodynamic

MSLP Mean sea level pressure Native Gaussian Archived Kinematic

PWAT Total precipitable water Native Gaussian Archived Thermodynamic

Q2M Specific humidity two meters above

ground

Native Gaussian Archived Thermodynamic

RH2M* Relative humidity two meters above

ground

18 3 18 Derived Thermodynamic

SHR500 Bulk wind difference magnitude between

10m and 500 hPa

18 3 18 Derived Kinematic

SHR850 Bulk wind difference magnitude between

10m and 850 hPa

18 3 18 Derived Kinematic

SRH* Storm relative helicity from surface to

850 hPa

18 3 18 Derived Kinematic

T2M Air temperature twometers above ground Native Gaussian Archived Thermodynamic

U10 Zonal component of 10-m wind Native Gaussian Archived Kinematic

UV10 10-m wind speed Native Gaussian Derived Kinematic

V10 Meridional component of 10-m wind Native Gaussian Archived Kinematic

ZLCL* Height of lifted condensation level 18 3 18 Derived Thermodynamic
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(Trapp et al. 2006; Verbout et al. 2006; Doswell 2007;

Agee and Childs 2014), but the trends are negligible

over this study’s evaluation period, and the period

does not overlap with any infrastructural changes

(e.g., introduction of the WSR-88D network) that

rapidly changed report counts over a short time period

(e.g., Agee and Childs 2014). Thus, reporting trends

are not a significant concern for this study. Additionally,

while the SPC outlooks underwent a significant change

in October 2014, when ‘‘marginal’’ and ‘‘enhanced’’

categories were added to outlooks on Days 1–3 (Jacks

2014), the changes only remapped categorical defini-

tions to the unchanged probability contours.

Based on different diurnal and seasonal climatol-

ogies (e.g., Brooks et al. 2003; Nielsen et al. 2015;

Krocak and Brooks 2018), and due to differing regimes

and storm systems primarily responsible for severe

weather across the CONUS (e.g., Smith et al. 2012), the

country is partitioned into three regions: west, central,

and east (Fig. 1). This study develops separateRFs for each

of the three regions of the CONUS, with unique forests

trained also for each of the five predictand lead-time

combinations: 1) Tornado Day 1, 2) Hail Day 1, 3)

Wind Day 1, 4) Severe Day 2, and 5) Severe Day 3.

For the Day 1 models, the severity levels of the category

are retained using a 3-category predictand (none, non-

‘‘significant’’ severe, ‘‘significant’’ severe), while the

severity levels are aggregated for longer lead times.

Each of the 15 forests is trained using the 9-yr historical

record, regardless of the existence of severe storm re-

ports or SPC outlooks for a given day. As noted above,

the focus of this study is on the model evaluation rather

than on involved sensitivity experiments and parameter

tuning. Models were trained and evaluated using

Python’s Scikit-Learn library (Pedregosa et al. 2011);

deviations from defaults for this study were made

based on a combination of performance consider-

ations and computational constraints. The only pa-

rameters varied were the forest size and minimum

number of training examples required to split an impure

node in a decision tree. Informal tests were performed to

assess parametric sensitivity (i.e., forest size and number

of training examples) to the different hazard types,

which determined relatively small sensitivity to forecast

skill (not shown). For the interested reader, the final

values used are furnished in Table 2.

b. Evaluation and analysis

Trained RFs are evaluated in two distinct ways. First,

in section 3, the statistical relationships diagnosed by the

RFs [feature importances (FIs)] are investigated to de-

termine the insights gleaned about the forecast problem

and assess whether themodels are making predictions in

ways consistent with our external understanding of the

forecast problem. Due to the number and size of trees

in a forest, it is not practical to investigate the complete

structure of each tree in the forest; instead, FIs are used

to capture the extent of use of predictor information in

generating a final prediction. Though there are several

ways that FIs can be quantified (e.g., Strobl et al. 2007,

2008;McGovern et al. 2019), this study uses the so-called

‘‘Gini importance’’ metric (e.g., Pedregosa et al. 2011;

Herman and Schumacher 2018a; Whan and Schmeits

2018); we refer readers to McGovern et al. (2019) for a

more complete assessment of various feature impor-

tance techniques, including the pros and cons of each.

FIG. 1. Map depicting the training regions of the CONUS for the

statistical models used in this study. The west region is bounded by

258–498N, 2408–2558E; the central region by 258–36.58N, 2558–265.48E
and 36.58–498N, 2558–279.58E; and the east region by 258–298N, 2778–
280.28E; 298–36.58N, 265.48–2858E; and 36.58–498N, 279.58–2948E.

TABLE 2. Parameter summary for the different RFs trained in the study. All RFs for a given region and lead time employ the same

parameters, forest size and the minimum number of samples permitted to split an impure node. For more details, see Pedregosa et al.

(2011) and Herman and Schumacher (2018b).

West Central East

Lead time Forest size Min No. of samples Forest size Min No. of samples Forest size Min No. of samples

Day 1 500 30 500 120 1000 120

Day 2 1000 30 1000 120 1000 120

Day 3 1000 30 1000 120 1000 120

MAY 2020 H I L L ET AL . 2139

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/23 08:36 PM UTC



A single FI is attributed to each input feature, and may

be conceptualized as the number of node splits based on

the given feature, weighted in proportion to the number

of training examples encountering the split (Friedman

2001). The FIs are summed over each split in the tree for

each tree in the forest, and normalized so that the sum of

all FIs is unity. FIs thus range between zero and one,

with larger values indicating that the associated predic-

tor has more influence on the prediction values. In the

extremes, an FI of zero means that the predictor has no

influence on the prediction made by the RF, while a

value of one indicates that the value of the associated

predictor uniquely specifies the predictand. As noted

above, input predictors to the RF vary in simulated

forecast field, forecast time, and in space relative to the

forecast point. In many cases, it is convenient to present

FIs—which are calculated at every predictor point in

time and space—summed or normalized over one or

more of these dimensions to provide a summary aspect

of which fields, times, and locations are being most and

least used in generating predictions for different severe

weather phenomena.

Second, in section 4, the probabilistic performance

of the models is evaluated. The trained RFs are used

to generate probabilistic convective outlooks over

4.5 yr of withheld model data spanning 12 April 2012–

31 December 2016. Model skill is evaluated through

the Brier skill score (BSS; Brier 1950), using an in-

formed climatological reference, identical to official

SPC severe climatologies (Kay and Brooks 2000; SPC

2017b) as described in Herman et al. (2018), while

forecast calibration and resolution are assessed via re-

liability diagrams (Murphy and Winkler 1977; Bröcker
and Smith 2007; Wilks 2011) and fractional coverage of

severe weather reports (e.g., Erickson et al. 2019).While

forecasts are evaluated in aggregate, they are also as-

sessed both spatially and seasonally in order to assess the

times and locations where the RFs perform most and

least skillfully. To evaluate the RFs continuously across

theCONUS, forecasts generated over the three geographic

regions are stitched together using spatial smoothing with a

sigmoid function at the regional borders so as to eliminate

probability discontinuities.Additionally, followingHerman

et al. (2018), outlook skill is evaluated based on the large-

scale environmental conditions associatedwith the forecast,

as quantified based on CAPE and deep-layer bulk wind

difference (hereafter referred to as shear) in the North

American Regional Reanalysis (NARR; Mesinger et al.

2006). Findings are contextualized by comparing the RF

performance against SPC convective outlooks for the same

predictands issued with comparable lead times. Consistent

withHerman et al. (2018),Day 1SPCoutlooks evaluated in

this study come from the 1300UTC forecast issuance, while

Day 2 and 3 outlooks come from the 0100 CT (0600 or

0700 UTC) and 0230 CT (0730 or 0830 UTC) forecast is-

suances, respectively. Because the interpolated SPC prob-

ability grids verifiedmore skillfully than the uninterpolated

outlooks (Herman et al. 2018), the interpolated grids are

used as the benchmark for comparison in this study. In

most cases, the entire evaluation period is used for the

comparison; due to data availability constraints, a slightly

shorter 13 September 2012–31 December 2016 period is

used for Day 2 and 3 verification, while 12 April 2012–

31December 2014 is used for the evaluation in the CAPE-

versus-shear parameter space.

As a final evaluation of the operational utility of the

ML-based forecast guidance provided by the trained

RFs, a weighted blend of the SPC and RF-based con-

vective outlooks is evaluated over the aforementioned

periods at Days 1–3; the level of skill improvement, if

any, quantifies the value added by the addition of the

ML guidance to the operational forecast pipeline and

human forecast process. The evaluation period is seg-

mented into four quarters and weights are prescribed to

the SPC andRF forecasts by using the average BSS of the

two component outlooks based on the other three seg-

ments of the evaluation period that exclude the forecast

being weighted. Weights are prescribed in this manner:

W
SPC

5

1

12BSS
SPC

1

12BSS
SPC

1
1

12BSS
RF

; W
RF

5 12W
SPC

.

(1)

In the event that one BSS is negative, the weight asso-

ciated with that forecast is set to zero with the other set

to one. In this way, if either forecast set has no climatology-

relative skill on the portion of the evaluation periodused to

generate the weights, it does not contribute to the blended

forecasts, while if either forecast set is perfect, it com-

pletely determines the blended forecast. Statistical signifi-

cance of both the absolute climatology-relative skill and

comparisons between forecast sets are assessed using

bootstrapping whereby random samples of forecast days

are sampled with replacement among the evaluation pe-

riod to produce a realistic range ofBrier and climatological

Brier scores for each evaluated forecast set or forecast set

comparison.Other uncertainty analysis follows themethods

of Herman and Schumacher (2018b) and Herman et al.

(2018); more details may be found there.

3. Results: Model internals

Predictive utility of different simulated atmospheric

fields (Fig. 2) is found to vary somewhat by forecast
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region and severe predictand. Under almost all cir-

cumstances, CAPE is found to be the most predictive

severe weather predictor by a fair margin, particularly

for predicting hail and wind. CIN is generally identified

as far less predictive, but still more so than other fields.

The west is an exception, with CIN identified as quite

predictive of hail and especially severe wind and actually

having higher FIs than CAPE for wind (Fig. 2a). All

fields contribute some to the output of each model,

with a relatively balanced distribution outside of the

more predictive fields. In addition to CAPE and CIN,

SHR500 is found to be fairly predictive as well, and this

is most evident for hail (Fig. 2). For tornadoes, shear

over a shallower layer (SHR850) is found to be equally

(e.g., Figs. 2a,b) or more (Fig. 2c) predictive than

SHR500, and one of the more predictive variables

overall. Other variables with high FIs for tornadoes

include APCP, MSLP, and SRH. MSLP may be char-

acterizing the synoptic environment and helping dis-

tinguish favorable from unfavorable environmental

conditions for tornadoes. Additionally, SRH has often

been noted as a predictive variable for determin-

ing tornado potential (e.g., Davies and Johns 1993;

Thompson et al. 2007), and is found to be the most

predictive field in the East (Fig. 2c). Overall, the

RFs are largely following conventional wisdom about

human forecasting of severe weather: CAPE and

shear are some of the most important fields to con-

sider; deep-layer bulk shear is important for hail

and wind forecasts; bulk shear over a shallow layer

and helicity (i.e., SRH) are good predictors for

FIG. 2. FIs aggregated by atmospheric field for the Day 1

models in the (a) west, (b) central, and (c) east regions. Red bars

correspond to FIs for the tornado predictive model, green bars

to the hail predictive model, and blue bars to the wind predictive

model for each region.

FIG. 3. As in Fig. 2, but for the Day 2 and 3 models. Day 2 and 3 FIs

are indicated in blue and red bars, respectively.
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tornado occurrence; and the kinematic environment

plays a more significant role overall for tornadoes

than for severe hail and wind. The RFs have simply

learned these statistical relationships objectively and

empirically based on analysis of many historical cases,

and provide a quantitative assessment of variable

importance.

In predicting any severeweather beyondDay 1 (Fig. 3),

the trends largely follow the findings for hail and wind in

their respective regions. Considering that the vast ma-

jority of severe observations are either hail or wind, that

the FIs track those of hail and wind more closely than

tornadoes is not surprising. CAPE and CIN are about

equally predictive of severe weather at Days 2 and 3

in the west (Fig. 3a), with SHR500 the next most

predictive. The relative ranking mostly holds for the

Central and East regions (Figs. 3b,c), although CAPE

is much more predictive than CIN, especially in the

Central region. SHR850 becomes increasingly im-

portant with longitude, and is interestingly identified

as more indicative of severe weather in the east region

at these longer lead times. Importances are mostly

similar between days, though CAPE importance tends

to decline slightly from Day 2 to 3 (Fig. 3) and is dis-

tributed among the other fields. This is perhaps at-

tributable to the noisy and highly sensitive nature of

the CAPE field yielding less predictive utility with

increasing forecast lead time and associated increas-

ing uncertainty.

FIs may be further stratified along the time dimen-

sion (Fig. 4), revealing a clear diurnal peak in impor-

tance of model information throughout the forecast

period, although in all cases the peak is much more

uniformly distributed relative to the diurnal event cli-

matology in the region. In the extreme, tornadoes in

the west (Fig. 4a), there is little peak at all in FIs. In some

cases, notably in the east (Figs. 4c,f,i), the importance

peak is aligned with the climatological event maximum,

while in other situations, it leads (e.g., Fig. 4h) or lags

(e.g., Figs. 4d,e,g) the maximum. This result could be an

initiation bias—particularly in the lagging cases—while

it could also be attributable to the forecasted pre

(or post) event environment being more predictive than

the simulated evolution at event time. Breakdowns into

thermodynamic and kinematic variables (Table 1) re-

veals that the thermodynamic variables are much

more predictive of hail and wind than the kinematics,

while the two classes are about equally predictive

for tornadoes. Furthermore, while the thermodynam-

ics have a sharp diurnal peak, the importance of the

kinematic variables has little temporal dependence

throughout the forecast period (Fig. 4). FI time series

for Day 2 and 3 models (not shown) share similarities

with their Day 1 counterparts, with importance peaks

earliest in the east and latest in the west, and nearly

constant predictive utility of simulated shear (i.e., sum

of SHR500 and SHR850) across the forecast period

(not shown).

In space (Fig. 5), RF FIs are typically highest near

the forecast point and decrease with increasing dis-

tance from the point, but there are some notable

anomalies. FIs are generally most spatially uniform for

tornado prediction and have the sharpest peak in

predicting severe hail; this is especially true in the west

(cf. Figs. 4a,d). In the west, while FI maxima are col-

located with the forecast point for tornadoes and

wind, information to the east of the forecast point is

more predictive of conditions at that point than the

collocated simulated forecast values for hail and the

medium-range forecasts. A variety of factors could be

attributable to this observation, including a displace-

ment or initiation bias in the model’s placement of

storms in the region, or the lopsided event climatology

in the region, with most events occurring on the east-

ern fringes of the west region (see unfilled contours in

Figs. 6 and 7). Additionally, the signal could be rep-

resentative of poor forecast predictability over the

Intermountain West due to orography or air mass in-

teractions, whereas the synoptic environment over the

Great Plains is better depicted and forecast by the

GEFS/R, but more investigation is required to validate

many of these dynamic hypotheses and is beyond the

scope of this study. In the central region, FIs are

highest from the forecast point south, with maxima

southeast of the center point for every predictand ex-

cept severe winds (Figs. 5b,e,k,n), which has an iden-

tified maximum in predictive utility southwest of the

forecast point (Fig. 5h). The southern displacement in

importance appears to become more pronounced with

increasing forecast lead time, and is especially evident

at Day 3 (Fig. 5n). FI maxima also become less pro-

nounced with increasing forecast lead time (Figs. 5j–o),

consistent with past studies (e.g., Herman and Schumacher

2018a). In the East, importances for all severe weather

models maximize near the forecast point and extend to the

south and west.

In summary, the RFs trained in this study appear to

be making statistical deductions that are generally

consistent with our current physical understanding of

how these predictors–CAPE, CIN, SRH–may influ-

ence severe weather, and identify forecast fields to in-

spect that agree with conventional operational severe

weather forecast practices (e.g., Johns and Doswell

1992). However, the RF provides an automated,

objective, and quantitative synthesis of these many

important factors that contribute to a skillful severe
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weather forecast. The following section investigates

the predictive performance of these models.

4. Results: Model performance

a. Model skill

The RFs show ability to skillfully predict all severe

weather predictands (Fig. 6), though there are some

differences in the details. Prediction of tornadoes

(Fig. 6a) produced the most mixed verification results,

with statistically significant positive skill over the

central Great Plains, Mississippi Valley, Ohio River

valley, and parts of the mid-Atlantic region and Florida

Peninsula. However, BSSs are lower and in many cases

less skillful than climatology—albeit not statistically sig-

nificantly so—over the West, Northeast, upper Midwest,

far northern and southern plains, and theCarolinas. These

same general findings extend for significant tornadoes

(Fig. 6b) but with lower skill overall, with CONUS-wide

BSS decreasing from 0.029 for tornadoes to 0.013 for

significant torrnadoes. The large area of extremely nega-

tive skill over the West is simply reflective of the fact that

no significant tornadoes were observed over this region

during the verification period, and the model had above

climatological probabilities for some events. Due to the

small or even nonexistent sample, the negative skill ob-

served here is not statistically significant. Hail (Fig. 6c),

wind (Fig. 6e), and the Day 2 and 3 (Figs. 6g,h) models all

exhibit very similar spatial patterns of forecast skill, with

near-uniform and statistically significant positive skill

over much of the CONUS east of the RockyMountains.

Somewhat degraded skill is seen over southern Texas,

Florida, and pockets of the upper Midwest; these spatial

variations are particularly pronounced in the hail verifi-

cation (Fig. 6c). In theWest, fewer of the results are found

to be statistically significant due to the reduced event

FIG. 4. Normalized FIs aggregated as a function of forecast hour for the Day 1 models. The top, middle, and bottom rows depict FIs for

the tornado, hail, and windmodels, respectively, while the left, center, and right columns, respectively, depict FIs for the west, central, and

east regions. Severe phenomenon diurnal climatologies are depicted for each region in black. These and the total FIs, colored as indicated

in the panel legend, are normalized so that the curve integrates to unity. FI time series broken down by thermodynamic and kinematic

variables are also included, with lines as colored in the panel legend and using the variable partitioning depicted in Table 1.
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FIG. 5. FIs summed over all predictor variables and forecast times according to the corresponding

predictor’s position in gridpoint-relative space for the west, central, and east regions, respectively, in

the left, center, and right columns. Tornado model FIs are depicted in the top row, followed by hail,

wind, Day 2, and finally the Day 3 model on the bottom row. Yellows indicate high importance of

information at the point, while magentas indicate lesser importance. The forecast point is shown with

a black cross.
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FIG. 6. Brier skill scores (filled contours) in space evaluated over the 12 Apr 2012–31 Dec 2016 verification

period for each of the MLmodels trained in this study. (a)–(h) Performance of the tornado, significant tornado,

hail, significant hail, severe wind, significant severe wind, Day 2, and Day 3 outlooks, respectively. Unfilled

contours depict the Brier score of climatology at the point over the verification period; higher values indicate

more common events. Stippling indicates areas where the sign of the skill score is statistically significant at 95%

obtained from bootstrapping as described in the text.
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FIG. 7. As in Fig. 6, but it depicts the difference in BSS between ML outlooks and the analogous outlooks

issued by SPC. Greens indicate ML forecasts outperform SPC; browns indicate the opposite. Due to data

availability, a slightly shorter 13 Sep 2012–31 Dec 2016 period is used for the Day 2 and 3 outlook verification

comparison.
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frequency. Nevertheless, positive skill is still noted for

these predictands over much of the West, with the ex-

ception of a pocket of southwestern Colorado and

surroundings and the Pacific Coast. As with SPC con-

vective outlooks (Herman et al. 2018), Day 1 forecast

skill is highest for severe winds at 0.105, with hail in the

middle at 0.079. Skill unsurprisingly decreases with

increasing forecast lead time, and CONUS-wide BSSs

of 0.108 and 0.089 are observed for Day 2 andDay 3 RF

outlooks, respectively (Figs. 6g,h). Like with torna-

does, the spatial patterns are similar between hail

and wind and their significant severe counterparts

(Figs. 6d,f), except with lower skill magnitudes with

CONUS-wide numbers of 0.023 and 0.022 for signifi-

cant hail and wind. The highest (and statistically sig-

nificant) skill exists over the central plains for these

variables; positive but insignificant skill is observed in

the East, and skill near climatology observed over

much of the West.

Relative to SPC, the RF outlooks verify quite com-

petitively (Fig. 7). On Day 1, where human forecasters

have access to more skillful convection-allowing guid-

ance and more updated observations and simulations,

SPC outlooks are generally more skillful than the RF

(negative BSS differences), with aggregate skill score

differences of 20.007 for hail (Fig. 7c) increasing

to20.013 for tornadoes (Fig. 7a) and20.024 for severe

wind forecasts (Fig. 7e). However, the CONUS-wide

summary gives an incomplete picture, as there are

significant regional variations in skill differences. Unlike

the RF outlooks, which exhibited fairly uniform skill in

hail and wind across the eastern two-thirds of CONUS

(Figs. 6c,e), SPC interpolated convective outlooks

exhibited a strong latitudinal gradient in BSS, with

higher skill to the north (Herman et al. 2018). This is

reflected in the skill comparison, with SPC outlooks

substantially outperforming the RF outlooks over far

northern CONUS in predicting severe hail and wind

(Figs. 7c,e). However, over the southern two-thirds of

CONUS, the RF outlooks outperform the SPC out-

looks in these fields. There is much more spatial in-

homogeneity in the tornado outlooks (Fig. 7a). The

magnitudes of the skill differences at a point are

usually much smaller than in the hail and wind out-

looks, but SPC outlooks still outperform the RF

forecasts the most in the northern tier of states. The

mixed spatial skill comparisons for tornadoes extend

to verification of significant tornadoes (Fig. 7b) as

well, but the comparison is much different for signif-

icant hail (Fig. 7d) and wind (Fig. 7f) events. Here, RF

outlooks are actually found to exhibit higher proba-

bilistic skill overall than the SPC outlooks, with skill

differences of 0.012 and 0.020, respectively, for the

significant severe hail and wind outlooks. The gains

are largest over the central region.

For Day 2 and 3 periods (Figs. 7g,h), the RF outlooks

exhibit higher probabilistic skill than the analogous SPC

forecasts, with aggregate CONUS-wide skill differences

of 0.043 and 0.045, respectively, for the Day 2 and 3

outlooks. RF outlooks demonstrate higher skill over

almost all parts of CONUS, the primary exceptions be-

ing the Pacific Coast and western Colorado where the

RFs had lower absolute skill (e.g., Fig. 6g), and over

Louisiana, Arkansas, and eastern Texas. The biggest

skill differences over SPC are in the east region domain,

particularly the mid-Atlantic and southern NewEngland.

The general finding that the RF outlook skill becomes

increasingly skillful relative to SPC outlooks with in-

creasing forecast lead time is consistent with there being

less information beyond global, convection-parameterized

ensemble guidance onwhich to base a skillful forecast with

increasing lead time, with the biggest jumpbetweenDays 1

and 2. Other factors (e.g., human-based) that may con-

tribute to forecast skill differences at these longer lead

times are presented in the summary section.

Except for hail, which exhibits a springtime maximum

in skill (Fig. 8c), all RF outlooks exhibit a climatology-

relative peak in skill during the cold-season (Figs. 8a,e,g).

In fact, hail exhibits essentially an inverted seasonal cycle

in forecast skill compared with the other variables, since

hail outlooks verify worst in the winter and other vari-

ables verify worst in March. Tornadoes and wind also

exhibit a skill minimum in late summer–early autumn,

consistent with SPC outlooks (Herman et al. 2018). For

all severe weather predictands, the severe and significant

severe events have nearly identical seasonal cycles in

forecast skill (Figs. 8a,c,e). Comparing against SPC, while

there does not appear to be a clear seasonal or monthly

signal in the skill difference for tornado outlooks

(Fig. 8b), the primary advantage for SPC outlooks over

the RF counterparts in hail and wind appears to come

in the month of July, where SPC outlooks performed

very well (Herman et al. 2018) and substantially out-

perform the RF outlooks.

In contrast, in the Day 2 and 3 comparison, RF out-

looks outperform SPC by the most during the summer,

maximizing in July (Fig. 8h). These differences are all

consistent with the SPC being able to effectively har-

ness the advantages of convection-allowing guidance

for their Day 1 convective outlooks over the warm

season, where the responsible physical processes are

predominantly smaller-scale and more weakly forced

than cold-season events. At Day 2 and 3, where

convection-allowing guidance is largely unavailable,

efforts to forecast severe weather are hampered by

biased guidance that cannot come close to resolving
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FIG. 8. (left) BSSs and (right) BSS differences by month between ML and SPC outlooks for (a),(b)

tornado and significant tornado, (c),(d) hail and significant hail, (e),(f) wind and significant wind, and

(g),(h) Day 2 and 3 outlooks. Lines are colored as indicated in the panel legend; shading about the line

indicates 95% confidence bounds obtained by bootstrapping. Differences (COMP) are ML 2 SPC,

positive numbers indicating ML outperforms SPC. Note that the y axis varies between rows.
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the responsible physical processes. These biases are

largest in the convectively active warm season; the RF

outlooks, using years of historical data, are able to

robustly identify and correct for many of these biases,

leading to the largest improvements in skill when the

model biases are largest and the least skillful external

guidance is available to the human forecaster. In reality,

both the forecasters and RF products partially correct

for model biases, and both suffer from what they would

be if their inputs were completely unbiased.

Reliability diagrams for the RF outlooks (Fig. 9)

demonstrate quite calibrated forecasts along the spec-

trum of the probability distribution. A slight under-

confidence bias is observed for most predictands,

but otherwise calibration remains quite good until the

highest probability bins, where sample size is very small.

Maximum forecast probabilities get as high as approxi-

mately 30% for tornadoes, into the lower 50% range for

hail and wind, and into the lower 60s for any severe

event at Days 2 and 3. The main exception to calibration

are the tornado forecasts, which are characterized by a

slight overforecast bias. This may be attributable to

large differences in the event frequency between the

training sample, which featured many highly active

tornadic years, and the test period, which was relatively

quiet (Herman et al. 2018). Forecast resolution, which

is insensitive to forecast calibration and assesses the

forecast system’s ability to discriminate observed fre-

quencies, is largely positive and consistent across all

predictands as the observed frequency of events increases

proportionally with forecast probabilities. Noticeably,

tornado forecasts tend to have the lowest resolution of

all predictands.

b. Blended forecast skill

The weighted blend of SPC and RF outlooks de-

scribed in section 2 unsurprisingly demonstrates forecast

skill spatial characteristics of both the interpolated SPC

(Herman et al. 2018) and RF outlooks (Fig. 10). Most

prominently, the high skill in the northern states in the

SPC outlooks is reintroduced to the blend in the hail and

wind outlooks (cf. Figs. 6c,10c; Figs. 6e,10e). For pre-

dictands in which the skill difference is large between

the two outlook sources, such as for significant wind

(Fig. 10f) and the medium-range outlooks (Figs. 10g,h),

the blended outlooks verify very similarly to the more

skillful component, in part simply because the weights

direct the blend heavily toward that component. Across

the board, the SPC RF blend verifies as or more skill-

fully than the SPC outlooks alone—both in space

(Fig. 11) and when aggregated across the CONUS

(Fig. 12)—a testament to the utility of the RF guidance

in improving operational severe weather forecasts.

Even at Day 1, where SPC outlooks outperform the

raw RF guidance (Fig. 12), the blended forecasts out-

perform both the raw SPC and raw RF outlooks. In the

case of hail and wind, the margin of improvement is

considerable, with BSS improvements of 0.061 and

0.053, respectively (Figs. 11c,e). At Day 2 and 3, while

the blend is not able to improve skill over the RF

outlooks (Fig. 12), that difference is already consider-

able when compared with the SPC outlooks at 0.044

and 0.048 (Figs. 11g,h). Consequently, the blended

forecast exhibits much improved skill compared with

the raw SPC outlooks for all eight forecast predictands

evaluated (Fig. 12). Even more encouragingly, the skill

improvements are seen across all regions of the CONUS

(Fig. 11) with fairly uniform distribution. For hail, wind,

and the Day 2–3 outlooks, the skill differences are statis-

tically significant over all except for pockets of the western

CONUS where the climatological event frequencies are

insufficient to produce a robust sample. Hail outlooks are

most improved over the Mississippi Valley region into the

FIG. 9. Attribute diagrams for ML-based outlooks. Colored opa-

que lines with circular points indicate observed relative frequency as

a function of forecast probability; the solid black line is the one-to-

one line, indicating perfect reliability. Colors correspond to different

severe predictands and lead times as indicated in the panel legend.

Horizontal and vertical dotted lines denote the ‘‘no resolution’’ lines

and correspond to the bulk climatological frequency of the given

predictand. The tilted dashed lines depict the ‘‘no skill’’ line fol-

lowing the decomposition of the Brier score. Error bars correspond

to 95% reliability confidence intervals using the method of Agresti

and Coull (1998), and assuming nonoverlapping neighborhoods of

the sample distribution of a binomial sample proportion (i.e., ob-

served relative frequency) are independent. Sharpness diagram is

inset with lines indicating the total proportion of forecasts falling in

each forecast probability bin, using the logarithmic scale on the left

hand side of the figure. Probability bins are delineated by 2.5%,

3.5%, 5%, 7.5%, 10%, 12.5%, 15%, 17.5%, 20%, 25%, and 30%

thresholds for Day 1 tornado forecasts, and by 5.5%, 7.5%, 10%,

12.5%, 15%, 17.5%, 20%, 22.5%, 25%, 27.5%, 30%, 35%, 40%,

45%, 50%, 55%, and 60% for all other forecast sets.
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FIG. 10. As in Fig. 6, but for the weighted blend of SPC and ML outlooks.
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FIG. 11. As in Fig. 7, but skill for the weighted blend of SPC and ML outlooks against SPC outlooks.
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Midwest, while wind outlooks are most improved over the

southern plains, and the medium-range outlooks are most

improved over the East Coast urban corridor.

c. CAPE-shear space

One additional instructive skill decomposition in-

spects forecast verification in the CAPE versus shear

parameter space. The raw RF hail (Fig. 13d) and wind

(Fig. 13g) forecasts exhibit high skill throughout much

of the parameter space. Wind forecasts are skillful

throughout essentially the entire space, with a skill

minimum in the low CAPE, low shear corner of the

parameter space. Hail exhibits a local BSS minimum in

this region as well (Fig. 13d), but has primary skill

minima in the high CAPE, low shear and especially the

low CAPE, high shear corners of the parameter space.

Tornado forecast verification results are more mixed.

Like hail, forecast skill suffers in scenarios with am-

ple supply of CAPE or shear, but little of the other

(Fig. 13a). Skill is significantly positive when sufficient

amounts of both ingredients are in place, but outlooks

are not always skillful relative to climatology with less

pronounced convective ingredients (Fig. 13a). The

addition of the weighted average with SPC outlooks

(Figs. 13b,e,h) improves outlook skill across the pa-

rameter space while leaving the character of the skill

distributionmuch the same. Skill improvement is especially

evident in low CAPE scenarios with low to moderate wind

shear (e.g., Fig. 13e); skill improvement is minimal in the

high CAPE, low shear and low CAPE, high shear corners

of the parameter space, where SPC outlooks also struggle

(Herman et al. 2018). In comparison to the raw SPC

outlooks, the blend of the RF-based ML forecasts with

the SPC outlooks yields skill improvements across the

parameter space for hail (Fig. 13f) and wind (Fig. 13i)

forecasts, and across much of the domain for tornadoes

(Fig. 13c). The skill improvements are largest in the low

shear end of the parameter space, especially with high

CAPE. In general, where convective predictability is low-

est in dynamical model guidance (i.e., low-shear) due to

complex storm interactions and longevity dependence on

storm morphology (e.g., Houston and Wilhelmson 2011),

the combination of statistical guidance and forecaster

knowledge leads to improved skill over the individual raw

SPC and ML outlooks.

d. Case study

A brief case study example is provided in order to il-

lustrate the real-time character of theMLmodel forecasts.

The outlooks valid 1200 UTC 9 May–1200 UTC 10 May

2016 (Fig. 14) are chosen for evaluation, a period in the

middle of a moderate-severity multiday outbreak, which

spread from the Colorado plains to the Mississippi Valley.

SPC’s Day 1 tornado outlook (Fig. 14c) highlighted the

southern domain reasonably well, with a 10% risk contour,

but was generally too far southeast with many tornadoes

occurring on the edge of the 2% probability contour, and

most of the northern cluster was missed entirely. SPC

forecasters identified hail (Fig. 14f) as the primary risk of

the day, with a 30% risk contour in addition to a significant

hail contour over eastern Oklahoma, western Arkansas,

and far northeastern Texas. Their wind outlook (Fig. 14i)

had essentially an identical outline to the severe hail one,

except topping out with approximately 15% event proba-

bilities and no significant wind contour.

In many respects, the ML Day-1 outlooks were im-

proved, relative to the SPC outlooks. The tornado

outlook (Fig. 14a) both indicates higher risk, with a

maximum tornado probability over 15%; displaces the

maximum to the northwest where more events were

observed; and extends the probabilities farther north to

at least indicate some appreciable risk in the northern

cluster, albeit still lower than in the southern region.

The hail (Fig. 14d) and wind (Fig. 14g) outlooks are

more distinct, with higher hail probabilities to the north

and west over Oklahoma, Kansas, and Nebraska and

lower probabilities to the east; these changes again

better collocate the high event probabilities with the

observations. Compared with hail, wind probabilities

maximize to the southeast over eastern Oklahoma and

Arkansas. The RF models forecasts also had better

spatial placement in the medium range, even indicating

the two primary risk areas at Day 2 (Fig. 15a), and

encompassing the western severe weather observations

when the operational outlook (Fig. 15c) did not. This

difference was further magnified at Day 3 when only

a 15% severe probability was indicated and many

FIG. 12. CONUS-total BSS for each of the eight verified pre-

dictands for the SPC outlooks (yellow bars), ML forecasts (blue

bars), and weighted average of the two (green bars). Error bars

indicate 95% BSS confidence bounds obtained via bootstrapping.
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severe weather reports over the central plains were not

encompassed by the 5% marginal contour in the op-

erational outlook (Fig. 15f), while nearly every ob-

servation was encompassed by a 2% contour at Day 3

in the ML outlook (Fig. 15d) and severe probabilities

maximized over 30%. On the other hand, it should

be noted that the ML model misidentified an area

of enhanced probabilities in eastern Virginia and

North Carolina at all lead times that did not receive

severe weather reports. The blended model forecast

(Figs. 14b,e,h and 15b,d) took many of the successful

aspects of the ML and SPC outlooks and refined the

area of severe threat, eroding lower probabilities at

the edge of the outlooks (e.g., Fig. 14b) and mini-

mizing erroneous probabilities in the mid-Atlantic

region (e.g., Fig. 15e). While not all cases demonstrate

this degree of success, this case study exemplifies

many of the benefits consistently demonstrated by

machine learning: relative spatial placement of risks,

approximate risk magnitudes, and rarely missing ob-

served events entirely.

e. Spatial characteristics

Finally, the spatial coverage of severe reports in

each outlook probability threshold is considered across

many cases through fractional coverage statistics. The

FIG. 13. BSS evaluation broken by CAPE vs shear parameter space for (a)–(c) tornado, (d)–(f) hail, and (g)–(i) wind outlooks as

partitioned in Herman et al. (2018) and described in the manuscript text. Unfilled contours replicate the filled contours at the20.3,20.2,

20.1, 0.1, 0.2, and 0.3 levels and are included for quantitative clarity. The left column depicts verification of the ML forecasts, the center

column to the evaluation of the weighted blend of SPC andML outlooks, and the right column presents the skill score difference between

the blend and the raw interpolated SPC outlooks, with greens indicating an improvement over the SPC outlooks and browns representing

loss of skill. Stippling indicates regions where the sign of the BSS or BSS difference is statistically significant with a 5 0.05 based on

bootstrap resampling.
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SPC-defined outlook probabilities for each hazard type

are compared against corresponding severe storm re-

ports to determine the average fractional coverage of

observations in each category (e.g., Erickson et al. 2019).

For example, it should be expected that severe hail re-

ports (with a 40-km neighborhood) encompass greater

than or equal to 15% of the spatial area in a 15% fore-

cast probability contour on average, not to exceed the

next probability contour (e.g., 30%). To facilitate this

analysis, each outlook probability threshold (for each

hazard type) from 1 January 2013 to 31 December 2016

is compared to severe reports, and overlapping coverage

of probability contours with severe reports is aggregated

for the RF model outlooks (ML), blend of RF and SPC

outlooks (BLEND), and SPC outlooks (Fig. 16). For

Day 1 hazards, the SPC outlooks are well-calibrated for

tornadoes (Fig. 16a), and poorly calibrated for hail and

severe wind at probabilities above 5% (Figs. 16b,c); hail

and wind outlooks are consistently too large or frequent

(below the black line in Fig. 16) with low fractional

coverage compared to the probabilistic category. In

comparison, the ML and BLEND models are compa-

rable to SPC outlooks for tornadoes, but better cali-

brated for severe hail and wind. In contrast to the Day 1

outlooks, nearly all outlooks generated for Days 2 and 3

are too small and infrequent (above the black line in

Fig. 16), particularly at the higher outlook probability

thresholds (Figs. 16d,e); the fractional coverage of se-

vere weather reports is on average greater than the

probabilistic forecast. The SPC, ML, and BLEND out-

looks are fairly comparable at the 5% and 15% thresh-

olds for Day 2 and 3 aggregated severe potential, and

all perform poorly at the higher thresholds, where the

outlooks are routinely too small and overconfident. It is

FIG. 14. Outlooks from the (left) RFmodels, (middle) blendedML1SPCmodel, and (right) raw interpolated SPC contours valid for the

24-h period ending 1200UTC 10May 2016. Filled contours depict severe probabilities as indicated by the corresponding colorbar on figure

bottom; unfilled contours indicate significant severe probabilities for the corresponding phenomenon as applicable. Day 1 (a)–(c) tornado,

(d)–(f) hail, and (g)–(i) wind outlooks are shown. Severe weather reports for the period are shown with red, green, and blue circles for

tornadoes, hail, and wind. Darker colored stars indicate significant severe reports for the color-corresponding phenomenon.
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notable that the statistical models do not forecast

the highest probability thresholds often (Figs. 16b–e).

Generally, well-calibrated guidance routinely comes

from the BLEND outlooks for all Day-1 predictands,

and low probability threshold Day-2 outlooks, illus-

trating the value of incorporating statistical forecast

guidance with the human forecast process.

5. Summary and conclusions

RFs have been trained to generate probabilistic pre-

dictions of severe weather for Days 1–3 across the

CONUS with analogous predictands to SPC’s convec-

tive outlooks, with tornado, hail, and wind treated sep-

arately at Day 1 and collectively for Days 2–3. Distinct

RFs were trained for the western, central, and eastern

CONUS as partitioned in Fig. 1. Inputs to the RFs came

from the GEFS/R ensemble median of 12 different at-

mospheric fields: APCP, CAPE, CIN, PWAT, U10,

V10, UV10, T2M, Q2M, SHR850, and SHR500. For the

Day 1 models, three additional predictors were used:

RH2M, ZLCL, and SRH. The spatiotemporal evolution

of each of these fields in the vicinity of the forecast point

throughout the forecast period was included in the

predictor set to provide a comprehensive assessment of

the simulated environmental conditions for each severe

weather forecast. Each of the fifteen RFs—three regions

and five predictands—was trained on nine years of

forecasts spanning 12 April 2003–11 April 2012. The

identified relationships between simulated model vari-

ables and observed severe weather during that period

were assessed using RF FIs. The trained RFs were then

run over an extended withheld test period spanning

12 April 2012–31 December 2016 and the performance

of these forecasts assessed, both in isolation with a cli-

matological reference and relative to SPC convective

outlooks issued during the same period.

The statistical relationships identified by the RFs

bear considerable correspondence with known physical

relationships between atmospheric variables and se-

vere weather, lending credence to the veracity of the

model solutions. For example, CAPE, CIN, and wind

shear—some of the most commonly used variables to

characterize severe weather environments (e.g., Johns

and Doswell 1992)—are consistently identified as the

most predictive variables for forecasting severe weather.

More nuanced identifications are made as well, includ-

ing more emphasis on kinematics in tornado prediction

compared with hail and wind, and additionally, wind

difference over a shallower vertical layer being more

predictive for tornadoes than for hail and wind. Even

spatiotemporal relationships that are identified accord

with physical intuition of advective properties, such as

enhanced importance to the south and southwest for

variables in the central and east regions, respectively,

particularly for longer lead times.

FIG. 15. As in Fig. 14, but the (a)–(c) Day 2 and (d)–(f) Day 3 outlooks are presented, issued previously for the same valid 24-h period

ending 1200 UTC 10 May 2016.
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In terms of aggregate performance, the outlooks

demonstrate impressive probabilistic forecast skill, sig-

nificantly outperforming equivalent SPC outlooks at

Days 2 and 3 as well as for significant severe events at

Day 1, while underperforming SPC outlooks somewhat

in the standard categories at Day 1. However, a

weighted blend of the two outlooks significantly out-

performed the SPC outlooks for all phenomena and

lead times, with the blend also significantly outperforming

the raw ML-based outlooks at Day 1. The largest im-

provements came for hail and wind, with less gain seen

in the tornado outlooks. Spatially, the skill gains of the

blend were nearly uniform, although the most gain was

generally seen in theMississippi Valley at Day 1 and the

East for Days 2 and 3 with the most variability in the

West owing to the low climatological frequency and

small sample size. Seasonally, the largest gains at

Day 1 tended to occur during the winter and spring, with

the largest medium-range gains seen in the summer.

Additionally, the largest forecast skill improvements

generally came when wind shear was relatively low, but

across the spectrum of environmental CAPE. The area

coverage of observations by the ML models and SPC

outlooks were also evaluated. At Day 1, the ML and

FIG. 16. Average coverage probability of severe weather reports for Day 1 (a) tornado, (b) hail, and (c) wind outlooks and (d) Day 2 and

(e) Day 3 outlooks from the RF model (ML), blend of ML and SPC outlooks (BLEND) as discussed in the text, and SPC forecasts (SPC)

calculated from 2013 to 2016. For each predictand, outlooks are broken down by respective categorical probability thresholds as defined

by SPC. Horizontal black lines correspond to the expected range of area coverage for each probability threshold, with calibrated forecast

products lying between the lines for a particular threshold.
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blended models were effectively calibrated for all haz-

ard types and all but the highest probability contours

when few RF forecast contours are issued. SPC forecast

outlooks were calibrated best for Day 1 tornado events,

and typically oversized for hail and wind. All three

forecast products were generally well calibrated for Day

2 and 3 aggregated severe threats at low probability

thresholds, and overconfident (i.e., undersized) at higher

probability contours.

Some limitations of this analysis should be noted.

Principally, due to a combination of logistical and

practical constraints, SPC outlooks are inherently lim-

ited in their probability contours, and the human fore-

caster cannot issue probabilities across the entire

probability spectrum like ML-models can. Some of

this is partly overcome here by interpolating between

SPC probability contours, which Herman et al. (2018)

demonstrated to yield higher probabilistic skill com-

pared with the uninterpolated outlooks. However, some

limitations remain. In particular, probabilities much

above the highest risk contour, 60%, cannot be pro-

duced even with interpolation. More significantly, risk

contours below the lowest risk contour—2% for torna-

does and 5% for everything else—cannot be produced

at all without imposing additional assumptions about

probabilities in the vicinity of but outside risk contours.

Instead, all forecast probabilities outside the lowest

risk contour are assumed to be zero. The ML-based

outlooks frequently forecast event probabilities above

0 but below 2% or 5%, which contribute to mixed skill

in areas where severe reports are infrequent (e.g., sig-

nificant tornadoes in the West region), but substantial

relative-skill improvements—skill relative to SPC out-

looks—for nonsignificant Day-1 severe events (not

shown). This effect is further exacerbated for signifi-

cant severe events. Here, SPC only issues a 10% risk

contour, and can thus only issue 0 or 0.1 event proba-

bilities. Forecasts above 10% do occur, but are quite

rare in the ML-based outlooks, and the majority of the

skill reaped in its outlooks occur from its above-

climatological event probabilities that are neverthe-

less below 10% (not shown). Additional limitations

exist due to the prescribed, static set of input predictor

variables, which were selected based on considerations

from previous work (e.g., Herman and Schumacher

2018b). By choosing a static set of input predictors

that are believed to be important for severe weather

forecasting, the RF model is not necessarily learning

anything new about the forecast problem, a major

benefit of RFs that can be exploited to gain insight

into a particular forecast problem. It may be benefi-

cial to tailor individual hazard RF models to different

sets of predictors and evaluate other sophisticated

importance measures, which the authors feel is a

worthwhile avenue for future research, but beyond the

scope of this work.

Notwithstanding these limitations, the results of this

study demonstrate great promise for the application of

machine learning to operational severe weather fore-

casting, particularly in the medium range. Moreover,

when combined with the outcomes of other studies (e.g.,

Herman and Schumacher 2016, 2018b), the favorable

comparison with operational benchmarks across a wide

range of applications suggests utility in analogous methods

as a statistical postprocessing tool across the broader do-

main of high-impact weather prediction (e.g., McGovern

et al. 2017). The approach taken here is fairly simple,

and based on relatively unskillful dynamical guidance

compared with the current state of operational dynamical

NWP. Future work that investigates use of more sophisti-

cated preprocessing; additional physically relevant predic-

tors; use of additional data sources, including observations,

convection-allowing guidance, and other dynamical en-

sembles; and more detailed and individualized treat-

ments of the different severe weather predictands

(e.g., Gagne et al. 2017) into a single synthesized

machine learning–based probabilistic forecast model

may yield considerable additional skill compared to

what has been demonstrated here. Additionally, the

blended RF1SPC model methodology could be easily

adjusted for real-time evaluation, specifically using

rolling weights (e.g., the last 90 days of forecasts)

or fixed weights to generate forecasts. Nevertheless,

even this straightforward implementation has illus-

trated considerable potential benefit for using ma-

chine learning in operational severe weather forecasting,

and further research in this domain is certainly

warranted.
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APPENDIX

Derived Variables

a. Relative humidity

Relative humidity is calculated as a function of spe-

cific humidity q, temperature T, and pressure P, all of

which are natively archived. The surface pressure is as-

sumed to be negligibly different from the air pressure

two meters above ground. The variables are related

through Clausius–Clapeyron, as employed in Bolton

(1980) and elsewhere:

RH5
0:2633P3q

e
17:67ðT2T0Þ

T229:65

(A1)

where temperature is in K and pressure is in Pa, and a

reference temperature T0 of 273.15K is used. RH is

calculated on the 18 grid, since surface pressure is only

archived on this grid.

b. Lifting condensation level height

An exact formula for the LCL height as a function of

temperature, pressure, and relative humidity was de-

scribed in Romps (2017), and that formulation is em-

ployed here. Relative humidity is not natively archived

and is supplied to this formulation as calculated in the

previous subsection.

c. Wind shear

SHR850 and SHR500—bulk wind differences between

two vertical levels—are calculated straightforwardly:

SHR8505
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(U

850
2U

10m
)2 1 (V

850
2V

10m
)2

q
, (A2)

SHR5005
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(U

500
2U

10m
)2 1 (V

500
2V

10m
)2

q
. (A3)

Winds were used on the 18 grid for both levels.

d. Storm relative helicity

Limited information is available fromwhich to calculate

SRH, but given its demonstrated importance in severe

environments (e.g., Kuchera and Parker 2006; Parker

2014), the forecast information is used to generate as ac-

curate of SRH estimates as possible. Low-level vertical

winds on pressure levels are provided at only 1000, 925,

850, and 700hPa—quite insufficient for use in an SRH

calculation. In height, winds are provided at only 10

and 80m above ground level—again, insufficient. Hybrid

levels provide some resolution in the low levels, withwinds

archived on the 0.996, 0.987, 0.977, and 0.965 sigma levels;

geopotential heights are provided for these levels as well.

Thus, for calculating SRH from the surface to 850hPa, five

layers are used: 1) 10 m–0.996s, 2) 0.996s–0.987s, 3)

0.987s–0.977s, 4) 0.977s–0.965s, and 5) 0.965s–850hPa.

Storm motion is estimated as 75% and 308 to the right

of the mean wind, a common heuristic employed in

Ramsay and Doswell (2005) and others. The mean

wind is estimated as the average of the wind at 850,

500, and 200 hPa:

U5
U
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1U

500
1U

200

3
; V5

V
850

1V
500

1V
200

3
.

(A4)

Accordingly,

SRH5�
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l
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with

U
l
5

U
l
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and

U
st
5

ffiffiffiffiffiffiffiffiffi
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p
3 [U cos(2308)2V sin(2308)] , (A8)

V
st
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